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1. Introduction

Time-dependent phenomena in string theory are not easy to understand. Tractable exam-

ples of time-dependent backgrounds are rare, making it hard to extract general lessons

about how string theory differs from ordinary field theory in the description of time-

dependent phenomena. Conceptual and technical issues appear to be intertwined in a

complicated way: If one tries to construct the conformal field theories (CFTs) describing

time-dependent backgrounds using nonlinear sigma models, one has to face the unbound-

edness of the sigma model path integral due to the indefinite signature of the metric. The

very definition of CFTs describing time-dependent backgrounds is therefore problematic

in general. On the other hand, experience from point-particle field theories suggests the

definition of the vacuum of the string (field) theory becomes ambiguous in generic time-

dependent backgrounds. If and how such technical and conceptual problems are intertwined

is not well understood.

An interesting class of time-dependent phenomena is often referred to as tachyon con-

densation. This includes decay processes of unstable D-branes, interpreted as the conden-

sation of an open string tachyon on the relevant brane. In order to bypass the technical

difficulties involved in the definition of a CFT which describes a tachyon condensation

process it is often proposed that one can simply restrict attention to the CFT describing

the spatial part of the background. Tachyons are then described by relevant fields in this

CFT. Perturbing the CFT by these relevant fields will generate nontrivial renormalization

group (RG) flows, whose end-points are then conjecturally interpreted as the possible final

states of decay processes in the genuinely time-dependent description.

The scope and limitations of this picture are not well understood. A major puzzle

stems from the fact that the evolution equations for background fields like the tachyon

are second order in time derivatives, whereas the RG flow equations are first order differ-

ential equations. This seems to exclude any simple relationship between renormalization

group flows and the true time evolution. One may still hope the time-independent de-

scription using RG flows correctly describes at least certain qualitative features of the true

time evolution like the initial and final states. However, the fact that the time evolution

equations are second order differential equations suggests that the solutions which describe

rolling from an unstable maximum of the tachyon potential will typically exhibit oscillatory

behavior and may not relax to any stationary final state as suggested intuitively by the

time-independent picture in terms of RG flows.

A first step towards the resolution of this puzzle was recently made in [1]. Proper

inclusion of the dilaton typically produces a damping force that may lead to relaxation
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into the minimum of the tachyon potential which corresponds to the end-point of an RG

flow in the time-independent description. However, the mechanism studied in [1] applies

only to supercritical backgrounds.

In the present paper we will propose a different mechanism which reconciles - qualita-

tively, for a certain class of backgrounds - the time-dependent and the time-independent

pictures. The mechanism applies to backgrounds in which a localized tachyonic excitation

couples to a continuum of string modes which can escape to infinity. The energy released

in the condensation of the localized tachyon is radiated away to infinity. Having infinitely

many degrees of freedom into which the energy is dissipated avoids any oscillatory nature

for the resulting dynamics of the tachyon.

The noncompactness of the string background is crucial for this mechanism. If the

(open) string spectrum is discrete, as is typically the case for compact backgrounds (branes),

it may not be true that the system relaxes into a new stationary state.

1.0.1 On the use of conformal perturbation theory

It is not trivial to construct examples which illustrate the points above within the world-

sheet approach to string theory. The examples we will discuss in this paper will be con-

structed by means of conformal perturbation theory. However, the application of conformal

perturbation theory turns out to be somewhat subtle for this type of problem.

Conformal perturbation theory will be useful in the present context only if there is a

parameter δ in the theory which allows one to make the decay process arbitrarily slow. The

parameter δ is related to the deviation from marginality in the time-independent picture.

It also controls the amount of energy stored in the unstable brane. One ultimately aims

to develop a series expansion in the parameter δ.

In some cases we will be dealing with examples where, strictly speaking, no renormal-

ization of the perturbation Lagrangian is necessary. This means the bare coupling constant

λ is well-defined, and the series expansion in λ is meaningful. However, the expansion in

λ is not useful to extract the corrections to leading order in δ. The use of renormaliza-

tion group (RG) technology will prove crucial in order to extract these contributions to

string emission amplitudes. We will take advantage of the fact that using effective cou-

pling constants as determined by the renormalization group equations effectively amounts

to resumming certain contributions to a “naive” perturbative expansion. The fact itself is

certainly known from other quantum field theoretical models, but crucial for our present

investigation is a more precise statement: Any “proper” regularization scheme1 leads to

the definition of renormalized coupling constants λren which themselves are of the order δ,

and which allow us to capture the leading order (in δ) effects in the first order of pertur-

bation theory in λren. This result may be known, but at least in the context of conformal

perturbation theory we did not find a sufficiently detailed discussion of it in the literature.2

We have therefore included a self-contained discussion of this point in our paper.

1See section 2 for the explanation of what we call a proper regularization scheme.
2See, however, [4] for some remarks in this direction
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A second subtlety is the following. If one uses conformal perturbation theory one

might be tempted to drop irrelevant fields from the perturbation Lagrangian. This turns

out to lead to incorrect results in our example. Irrelevant fields that are sufficiently close

to marginality produce important contributions to correlation functions. In our case they

precisely take care of the radiation into strings that propagate out to infinity.

1.0.2 The model

The model which will illustrate the mechanism proposed above in a controlled way is the

so-called c = 1 noncritical string theory, see e.g. [2, 3] for reviews. The c = 1 string

theory is a two-dimensional string background with coordinates (X0, φ) ∈ R
2, where X0

represents time. This background is characterized by the following expectation values for

the target-space metric Gµν , the dilaton Φ and the tachyon field T :

Gµν = ηµν , Φ = φ, T = µe2φ . (1.1)

The worldsheet-description of this background is defined by a (boundary) CFT with central

charge c = 26 which is the product of Liouville theory with the CFT of a free timelike boson.

Note the linear growth of the dilaton in (1.1) implies the string coupling is strong

for φ → ∞, whereas it is weak for φ → −∞. The tachyon expectation value T = µe2φ

produces a force on the closed strings which exponentially grows for φ → ∞, and which

therefore effectively confines the closed strings to the weak coupling region φ → −∞. This

force implies that the closed string states which for early times are injected into the weak

coupling region with positive momentum will ultimately be reflected back into the weak

coupling region.

An open string sector can be introduced by imposing Neumann-type boundary condi-

tions for both the space and the time directions that may include a space-dependent force

on the end-points of the open strings. The corresponding D-branes are often called FZZT

branes. These branes are described by a single parameter δ which may be thought of as

a parametrization for the force on the end points of the open strings. It should be em-

phasized, however, that we are dealing with a case in which semiclassical reasoning is not

applicable, and where the stringy corrections are substantial. What can be deduced from

the exact solution of boundary Liouville theory [5, 7, 8, 10, 11] is the following: The open

string spectrum always contains propagating open strings which bounce off the potential

wall coming from the tachyon condensate T = µe2φ. However, for certain values of the

parameter δ the string spectrum also contains bound states. In the case considered in this

paper there is a single bound state |ϑ〉〉 which turns out to be tachyonic. The wave-function

of |ϑ〉〉 decays exponentially towards the weak coupling region. This means the FZZT brane

is carrying a localized open string tachyon.

It is natural to interpret the bound state as the result of a balance between an attractive

force on the end-points of the strings and the repulsive force acting on the bulk of the string.

The very existence of the bound state is an indication of the presence of a sink in some

effective potential for open strings on the FZZT branes. We expect the condensation of the

open string tachyon |ϑ〉〉 may “fill up” this sink, producing an FZZT brane on which the
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forces on the open strings are effectively repulsive. The energy released in this process will

be radiated away into the weak coupling region as open and closed strings. We will show

this is precisely what happens by constructing a time-dependent solution to noncritical

string theory describing tachyon condensation on FZZT branes. One should note that the

effect of closed string radiation will be subleading in the string coupling constant gs in the

model we will study.

1.0.3 Content of the paper

The main technical result of the paper is the perturbative construction of a time-dependent

solution of noncritical open-closed string theory to lowest order in δ. This will heavily

exploit the RG improvement to the perturbative expansion. We will therefore start in

section 2 by explaining how RG techniques manage to resum the contributions to leading

order in δ.

In the following section we discuss the construction of general time-dependent back-

grounds describing open string tachyons. In so doing we will see some of the limitations of

time-independent RG flows as a description of time-dependent phenomena.

Section 4 introduces the relevant aspects of boundary Liouville theory, somewhat

sharpening the physical picture of the D1 branes along the way. We also discuss a renor-

malization group flow obtained by perturbing Liouville theory with a relevant boundary

field that provides a first hint towards the scenario discussed in the introduction. The

end-point of the RG flow which starts from the boundary condition δ is identified with the

boundary condition associated to the parameter −δ.

Section 5 then discusses the perturbative construction of a time-dependent solution of

string theory which is associated to the condensation of the open string tachyon on the D1

branes. It is found that the time dependent solution smoothly interpolates between the

static solution with parameter +δ in the asymptotic past and a background which can be

seen as the static solution with parameter −δ plus a propagating radiation background in

the infinite future.

Section 6 contains a discussion of the results obtained in the paper and directions for

future work.

Appendix A discusses RG equations in the presence of UV divergences which appear

when the identity operator is present in the OPE’s of perturbing operators. Appendix B

contains technical details regarding the boundary Liouville theory.

2. Renormalization group improvement of perturbative series

To begin with, we will consider the perturbation of a given boundary conformal field theory

(BCFT) by a relevant boundary field with conformal dimension 1− δ. Our aim is to show

how renormalisation group (RG) technology provides an efficient tool to extract the leading

behaviour of correlation functions for δ → 0.

To explain the method, we will first consider cases in which all short distance singu-

larities are integrable, so no renormalization is necessary. RG technology is nevertheless
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found to be an efficient tool for reaching our aim. The existence of divergencies in the per-

turbative integrals does not change any relevant feature of the resulting picture, as shown

in appendix A.

We will consider a BCFT which has a family of boundary conditions Bδ parametrized

by a parameter δ. The BCFT under consideration will contain primary boundary fields

φi(τ) of conformal weight hi, living on the unit circle, 0 ≤ τ < 2π, The labels i take values

in some set F (in the examples to follow, F may be a continuum).

To apply perturbation theory usefully, we will assume that the boundary conditions

Bδ are parametrized by δ in such a way that a small value for δ implies a relevant boundary

field φ0 is nearly marginal in the sense that y0 ≡ 1−h0 = O(δ). It will also be important

to consider all the other nearly marginal fields, including those which are irrelevant. We

will denote this set by M ⊂ F , the elements φi(τ) of M satisfy yi = 1−hi = O(δ). For

simplicity we assume all other fields have yi = 1−hi = O(1).3

The correlation functions of fields φi(τ) can be evaluated using their OPE, valid for

0 < τ < π,

φi(τ)φj(0) =
∑

k∈F

Cij
k
(
2 sin τ

2

)−1+yi+yj−yk φk(0) + descendents . (2.1)

Note that if F contains a continuum, the sum will become an integral. For simplicity, we

also assume the OPE coefficients have a nice δ-dependence like Cij
k = O(1).

We will consider a perturbation of the boundary condition by an operator φ0(τ), 0 ∈ M ,

Spert = λ

∫

∂Σ
dτφ0(τ) , (2.2)

which defines perturbed correlation functions via

〈. . .〉λ = 〈. . . e−Spert〉Bδ
(2.3)

= 〈. . .〉Bδ
− λ

∫

∂Σ

dτ〈. . . φ0(τ)〉Bδ
+

λ2

2

∫

∂Σ×∂Σ

dτ1dτ2〈. . . φ0(τ1)φ0(τ2)〉Bδ
+ . . . .

In the examples to follow, this perturbation will be UV finite and so the coupling constant

λ is well defined and the perturbation series in λ does not require any renormalisation.

Our task for this section is to calculate the leading δ behaviour of this series. We will find

that RG technology provides the answer but to see why, it helps to attempt to extract the

leading δ behaviour by brute force.

2.1 Brute force calculation

We concentrate on the perturbation expansion (2.3) in the particular case where dots

denote the insertion of operators into the interior of the disc. We proceed by taking the λ

series (2.3) and studying the small δ behaviour of each term. The nth term will be found

3These assumptions, together with a later one concerning the OPE coefficients, can be weakened or

adjusted. In fact, in our string theory example yi = O(δ2) and Cij
k = O(δ). It takes a moment to see such

changes do not affect the conclusions.
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to go as λnδ1−n. If λ = O(δ) it is clear the leading correction is O(δ), however every order

makes a contribution. Our task is to calculate these contributions.

Consider the second order term of (2.3). As δ → 0, this term becomes divergent due

to the singularity in the OPE (2.1). To extract this singular behaviour, we introduce a

distance L inside which the boundary-boundary OPE is valid (this distance will depend

on the location of the interior operators). We write,

λ2

2

∫

∂Σ

dτ1

∫

∂Σ

dτ2 〈. . . φ0(τ1)φ0(τ2)〉Bδ
=

λ2

2

∫

|τ1−τ2|<L

dτ1dτ2 . . . +
λ2

2

∫

|τ1−τ2|>L

dτ1dτ2 . . . , (2.4)

and the first term becomes,

λ2

2

∫

|τ1−τ2|<L

dτ1dτ2〈. . . φ0(τ1)φ0(τ2)〉Bδ

= λ2
∑

k∈F

C00
k

∫ L

0
du

(
2 sin u

2

)−1+2y0−yk

∫

∂Σ
dτ〈. . . φk(τ)〉Bδ

+ descendents

= λ2
∑

k∈M

C00
k 1

2y0 − yk

∫

∂Σ
dτ〈. . . φk(τ)〉Bδ

+ subleading in δ . (2.5)

The divergence is independent of our choice of L and comes from the fusion of the pertur-

bation into almost marginal fields (the fields with yi = O(δ), both relevant and irrelevant).

The other fields contribute to a higher order in δ. Also note that the geometry of the

boundary is largely immaterial for this calculation, only the short distance behaviour of

the OPE is important. Finally, second term in (2.4) is finite as δ → 0 and so represents a

subleading contribution to the correlation function.

Moving to third order, the leading δ behaviour will come from the region of integration

where all the boundary fields come together simultaneously. We again introduce a distance

L to isolate this contribution and use the OPE to evaluate the integrals. Note the OPE is

only valid for τ > 0 so one must be careful:

−λ3

6

∫

|τi−τj |<L

dτ1dτ2dτ3〈. . . φ0(τ1)φ0(τ2)φ0(τ3)〉Bδ
(2.6)

= −λ3

∫
dτ

∫ L

0
du1

∫ L

u1

du2〈. . . φ0(τ+u2)φ0(τ+u1)φ0(τ)〉Bδ

= −λ3

∫
dτ

∫ 1
2u2

0
du1

∫ L

0
du2 . . . − λ3

∫
dτ

∫ u2

1
2u2

du1

∫ L

0
du2 . . . .

Applying the OPE in the first term,

−λ3
∑

k,`∈S

C00
kC0k

`

∫
dτ

∫ 1
2u2

0
du1

∫ L

0
du2

(
2 sin u1

2

)−1+2y0−yk
(
2 sin u2

2

)−1+y0+yk−y`〈. . . φ`(τ)〉Bδ

+descendants

= −λ3
∑

k,`∈M

C00
kC0k

`

(2y0 − yk)(3y0 − y`)

∫
dτ〈. . . φ`(τ)〉Bδ

+ subleading in δ , (2.7)
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while the second term gives,

−λ3
∑

k,`∈S

C00
kCk0

`

∫
dτ

∫ u2

1
2u2

du1

∫ L

0
du2

(
2 sin u2−u1

2

)−1+2y0−yk
(
2 sin u1

2

)−1+y0+yk−y`〈. . . φ`(τ)〉Bδ

+descendants

= −λ3
∑

k,`∈M

C00
kCk0

`

(2y0 − yk)(3y0 − y`)

∫
dτ〈. . . φ`(τ)〉Bδ

+ subleading in δ . (2.8)

Combining these two contributions gives the leading third order term.

At this point we repeat some important observations, also valid at higher orders in

λ. 1) Only the almost marginal fields contribute, even in the intermediate stages. Other

fields have y-values O(1) and so make subleading contributions. 2) Although this was on

the disc, the result is largely independent of geometry.

One may repeat this analysis at each order in λ. Leading δ behaviour will come from

the region of integration where all the perturbing fields come together simultaneously, can

be evaluated using successive OPEs and will behave as λnδ1−n. The leading δ contribution

of a general correlator is of the generic form,

〈. . .〉λ = 〈. . .〉Bδ
−

∑

k∈M

λ̂k

∫

∂Σ
dτ〈. . . φk(τ)〉Bδ

+ subleading in δ , (2.9)

λ̂0 = λ − λ2 C00
0

y0
+ λ3

∑

`∈M

C00
`C`0

0 + C00
`C0`

0

2y0(2y0 − y`)
+ . . . , (2.10)

λ̂k = −λ2 C00
k

2y0 − yk
+ λ3

∑

`∈M

C00
`C`0

k + C00
`C0`

k

(2y0 − y`)(3y0 − yk)
+ . . . , (2.11)

however, the combinatorics required to find the exact answer to all orders would take many

pages of exposition and is unnecessary in light of a short-cut using renormalisation group

technology.

2.2 RG calculation

Note the answer (2.9) is already hinting at an RG connection, one interprets the λ̂k as

renormalised couplings replacing the bare coupling λ. A second clue is that at each order

the leading δ contributions came from the region of integration where all the perturbing

fields come together simultaneously. In a regulated correlator, this region is cut out and

it’s contribution absorbed into the renormalised couplings.

Consider a more general perturbation with an ε-dependent regulator,

Sreg =
∑

k∈F

µk(ε)ε
−yk

∫

∂Σ
dτφk(τ) , (2.12)

which leads to the following perturbative expansion for generic correlation functions 〈. . .〉µ,

〈. . .〉µ = 〈. . .e−Sreg〉Bδ,ε = 〈. . .〉Bδ
−

∑

k∈F

µk(ε)ε
−yk

∫

∂Σ
dτ〈. . . φk(τ)〉Bδ

(2.13)

+
∑

k,`∈F

µk(ε)µ`(ε)ε
−yk−y`

2

∫

∂Σ
dτ1dτ2ρε(τ1, τ2)〈. . . φk(τ1)φ`(τ2)〉Bδ

+ . . .

– 8 –
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For the moment, the perturbation contains all boundary fields. ρ denotes the regu-

lator, we will use the usual step function ρε(x1, x2) = θ(|x1−x2|−ε), ρε(x1, x2, x3) =

θ(|x1−x2|−ε)θ(|x2−x3|−ε)θ(|x3−x1|−ε), . . .. Later we will show the result is indepen-

dent of the choice of regulator. The coupling constants in the regulated correlators are

defined such that the resulting correlator is independent of the (small) cut-off ε. To second

order in perturbation theory and using the step-function regulation we find the following

renormalisation group equations,

ε
dµk(ε)

dε
= ykµk(ε) −

∑

i,j∈F

Cij
kµi(ε)µj(ε) . (2.14)

As ε → 0, the regulated correlator should reproduce the unregulated result,

lim
ε→0

µ0(ε)ε
−y0 = λ , lim

ε→0
µk(ε)ε

−yk = 0 , k 6= 0 . (2.15)

Together these equations fix the renormalised couplings and ensure that

〈. . .〉µ,ε = 〈. . .〉λ . (2.16)

To see what this has to do with the leading δ behaviour let us observe that equation (2.16)

implies in particular that

∑

k∈F

µk(ε)ε
−yk

∫
dτ〈. . . φk(τ)〉 (2.17)

= λ

∫
dτ〈. . . φ0(τ)〉 − λ2

2

∫
dτ1dτ2 (1−ρε(τ1, τ2)) 〈. . . φ0(τ1)φ0(τ2)〉 + . . . ,

The renormalised couplings contain the contribution to the perturbed correlators cut-out

by the cut-off. Using the OPE to write all the correlators in the same form we can equate

coefficients,

µ0(ε)ε
−y0 = λ − λ2

2

∫
du (1−ρε(τ, τ + u)) C00

0
(
2 sin u

2

)−1+y0 + . . . (2.18)

= λ − λ2 C00
0εy0

y0
+ . . . , (2.19)

µk(ε)ε
−yk = −λ2

2

∫
du (1−ρε(τ, τ + u)) C00

k
(
2 sin u

2

)−1+2y0−yk + . . . (2.20)

= −λ2 C00
kε2y0−yk

2y0 − yk
+ . . . . (2.21)

Since the leading behaviour comes from the removed area and the removed area is en-

coded in the renormalised couplings, all the leading behaviour must be encoded in the

renormalised couplings. We can extract this by taking the leading behaviour of the renor-

malised couplings,

µ0(ε)ε
−y0 = λ − λ2 C00

0

y0
+ . . . ,

µk(ε)ε
−yk = −λ2 C00

k

2y0 − yk
+ . . . . (2.22)

– 9 –



J
H
E
P
0
2
(
2
0
0
7
)
0
1
1

which we substitute back into (2.13). Noting that the renormalised couplings are O(δ)

and that the integrated regulated correlators are O(1) we reproduce the result of the brute

force calculation,

〈. . .〉λ = 〈. . .〉µ,ε = 〈. . .〉Bδ
−

∑

k∈F

µk(ε)ε
−yk

∫

∂Σ
dτ〈. . . φk(τ)〉A + subleading in δ , (2.23)

wherein the renormalised couplings are given by (2.22)

We observe that there is a simplification that we can make. Since we are only interested

in the leading δ → 0 behaviour of the renormalised couplings, looking at equations (2.14)

and solving them as power series in λ one can see this is encoded in the subset of equa-

tions involving only the almost marginal couplings, with all other couplings set to zero.

This is the renormalisation group realisation of the fact that when we did the brute force

calculation, we needed only the part of the OPEs involving the almost marginal fields.

Let us summarise our arguments. As seen from the brute force calculation, the leading

δ behaviour of correlators came from the regions of integration where the all perturbing

fields came together simultaneously. In a suitable renormalisation scheme, the contribution

from these regions is cut-out and absorbed into the renormalised couplings. It should be

emphasized that the expansion in powers of the renormalized coupling constants µ is simply

a reorganization of the perturbative expansion in powers of λ, as is clear from equation

(2.16). One can efficiently calculate these couplings by solving the RG equations with

correct boundary conditions. The power of the method is illustrated by the fact that

equations (2.19) and (2.21) can also be easily calculated from the renormalisation group

equations (2.14). The leading δ behaviour of the solutions to the RG equations will then

give the leading δ behaviour of the correlators via (2.23).

2.3 Toy Example : a single nearly marginal field

As an illustration of our method, we consider the perturbation in a theory with a single

nearly marginal field, y = 1−h = δ2. We use δ2 to make comparison with the time-

dependent formulation is easier.

〈. . .〉λ = 〈. . . e−Spert〉Bδ
, Spert = λ

∫
dτφ(τ) . (2.24)

In this case the RG equations are,

ε
dµ(ε)

dε
= δ2µ(ε) − Cµ(ε)2 , lim

ε→0
µ(ε)ε−δ2

= λ , (2.25)

which solve to give,

µ(ε)ε−δ2

=
δ2λ

δ2 + Cεδ2λ
=

δ2λ

δ2 + Cλ
+ subleading in δ2 , (2.26)

and hence the leading δ2 behaviour of the perturbed correlator is,

〈. . .〉λ = 〈. . .〉Bδ
− δ2λ

δ2 + Cλ

∫
dτ〈. . . φ(τ)〉Bδ

+ subleading in δ . (2.27)
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In the present example it is possible to carry out the brute force calculation by expand-

ing (2.24) in powers of λ, using the OPE to calculate the leading δ behaviour term by term

and then resumming the series. The result coincides with (2.27).

Note that the series (2.24) has a finite radius of convergence. By performing the re-

summation we obtain a continuation to all values of λ > 0 (for λ < 0, the renormalised

coupling becomes large and our perturbative assumptions break down). This is particularly

important when one tries to calculate the perturbed correlation function at a nearby renor-

malization group fixed point. In this case the renormalized coupling constant stays small

and approaches the fixed point value µ(ε) → δ2

C
as λ → ∞. The renormalized coupling

constant captures information that is nonperturbative in λ.

2.4 Scheme dependence

The equations above have been derived using a step-function cut-off. In this section we

consider a more general cut off ρε(x1, x2) = ρ(1
ε
|x1 − x2|). Re-deriving the RG equations

we find,

ε
dµk(ε)

dε
= ykµk(ε)−

∑

i,j∈M

Cij
kµi(ε)µj(ε)f(yi + yj − yk), f(y) =

∫ ∞

0
duuy dρ(u)

du
. (2.28)

What is important for our calculation is the leading δ behaviour, and one will note that

since ρ is a cut-off function (whose derivative is well behaved) we have

f(δ) = ρ(∞) − ρ(0) + subleading in δ

= 1 + subleading in δ . (2.29)

Hence as far as the leading δ behaviour is concerned, the result is scheme independent for

all schemes whose cut-off cleanly removes all the behaviour from the integrals which would

become divergent when δ → 0. Such schemes will subsequently be called “proper”.4

3. Perturbative construction of time-dependent backgrounds

The string backgrounds that we are interested in can be constructed as perturbations of

the product conformal field theory CFTS⊗CFTX0
. where CFTS is a conformal field theory

with central charge c = 25 representing the spatial part of the background and CFTX0
is

a free boson CFT that is defined by the action

S = − 1

4π

∫
d2x ∂+X0∂−X0 . (3.1)

The sign in front of the action means that X0 is time-like.

We will be interested in certain perturbations of the static open string backgrounds

which are characterized by a family of conformal boundary conditions Bδ for CFTS parametrized

4Using the equations like those derived in this section one could easily give some sufficient conditions

for the definition of such a scheme.
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by a parameter δ together with Neumann boundary conditions for the X0-CFT. The bound-

ary state for the static background can be written as

|Bδ 〉〉stat ≡ |Bδ 〉S ⊗ |N 〉X0
, (3.2)

where |N 〉X0
is the boundary state associated to Neumann type boundary condition for

the X0-CFT. The boundary state of the time-dependent (dynamical) background that we

are about to study will be denoted as |Bδ 〉〉dyn. It may be formally constructed as follows,

|Bδ 〉〉dyn ≡ e−SBd |Bδ 〉S ⊗ |N 〉X0
, (3.3)

where SBd is the following boundary action:

SBd ≡ λ

∫

∂Σ
dx [eδX0φ0](x) . (3.4)

here we have fixed y0 = δ2 such that the perturbing field has conformal dimension δ2 +(1−
δ2) = 1. There are cases where the short distance singularities in the OPE of [eδX0φ0](x)

with itself are integrable. It then follows that (3.3) indeed defines a conformal boundary

state to all orders in a formal expansion in the parameter λ.

We observe an immediate problem: The perturbative expansion in λ is not expected

to be convergent since a shift of the zero mode of X0 is equivalent to a rescaling of λ.

In the following subsection we will describe how this problem may be solved by fixing

the zero mode value. We will then explain how to calculate the boundary state |Bδ 〉〉dyn

to leading order in δ by generalizing the RG techniques from the previous section to the

time-dependent case.

In order to explain our method we will assume that the short distance singularities in

the OPE of [eδX0φ0](x) with itself are integrable. This assumption is made for pedagogical

purposes only, our main conclusions do not depend on it, as is shown in appendix A.

3.1 The X0 BCFT

To begin with, let us consider the X0-CFT on the cylinder with periodic boundary con-

ditions in space direction σ. The space of states of the X0 theory is generated from a

continuum of states 〈ω|X0
, ω ∈ R satisfying

〈ω |X0
L−n = 0 = 〈ω |X0

L̄−n, n > 0, 〈ω |X0
L0 = −ω2〈ω |X0

, (3.5)

where Ln, L̄n are the generators of the c = 1 Virasoro algebra.

In order to characterize the perturbed boundary state |Bδ 〉〉dyn one would naturally

consider the amplitude

A(a, ω) ≡ 〈〈 a, ω |Bδ 〉〉dyn , 〈〈 a, ω | ≡ 〈 a |S ⊗ 〈ω |X0
, (3.6)

where 〈 a |S is a highest weight state in the CFTS on the cylinder. However, as indicated

in the introduction to this section one can not expect that the perturbative expansion in

powers of λ will be useful to determine A(a, ω).
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In order to overcome this problem, let us introduce the zero mode x0 =
∫ 2π

0 dσ X0(σ, 0).

We may fix the zero mode x0 by considering amplitudes which involve the eigenstates 〈 t |X0

of x0. The states 〈 t |X0
are obtained from 〈ω |X0

by Fourier-transformation,

〈 t |X0
=

∫

R

dω eiωt 〈ω |X0
. (3.7)

It follows that the states 〈 t |X0
satisfy

〈 t |X0
L−n = 0 = 〈 t |X0

L̄−n, n > 0, 〈 t |X0
x0 = t 〈 t |X0

. (3.8)

Instead of considering A(a, ω), we will first determine the amplitude

A(a, t) ≡ 〈〈 a, t |Bδ 〉〉dyn , 〈〈 a, t | ≡ 〈a|S ⊗ 〈 t |X0
. (3.9)

We will interpret A(a, t) as an amplitude which directly represents the time evolution of

the boundary state |Bδ 〉〉dyn.

The perturbative expansion for A(a, t) in powers of λ involves amplitudes like

〈 t | :eδX0(σ1) : . . . :eδX0(σn) : |N 〉X0
= enδt

∏

r<s

∣∣∣∣ 2 sin
σr − σs

2

∣∣∣∣
2δ2

. (3.10)

The prefactor enδt comes from the zero mode dependence of the normal ordered exponen-

tials eδX0(σ) together with (3.8). The σr-dependent factors follow from the OPE

:eδX0(σ2) ::eδX0(σ1) : =
∣∣∣ 2 sin

σ2 − σ1

2

∣∣∣
2δ2

:eδX0(σ2)eδX0(σ1) : ,

which is the usual OPE of normal ordered exponentials of a free field up to the change

of sign in the exponent of the short-distance factor due to the minus sign in front of the

kinetic term for X0. The time-like nature of the X0-CFT is directly responsible for the fact

that the short-distance behavior of the operator product eδX0(σ2)eδX0(σ1) is nonsingular. It

follows that

〈 t | :eδX0(σ1) : . . . :eδX0(σn) : |N 〉X0
= enδt (1 + O(δ2)) (3.11)

holds as long as n is not of the order δ−1.

With these definitions one may use equations (3.3) and (3.9) to generate a formal

series expansion of A(a, t) in powers of λeδt. We expect that the radius of convergence of

this expansion is finite, as will be confirmed below. We will nevertheless be able to find

explicit representations for |Bδ 〉〉dyn and A(a, t) which are valid to leading order in δ but for

arbitrary λeδt by using the renormalization group resummation of the naive perturbative

expansion in powers of λ as discussed in section 2.

3.2 RG improvement in the time-dependent case

To represent the decay process in string theory, we couple our CFT to a time-like boson

with a Neumann-type boundary condition. We then perturb the theory by the (truly)

marginal operator,

S = λ

∫
dx [eδX0

φ0](x) . (3.12)
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with y0 = δ2. Using the technology above, this leads us to consider the regulated pertur-

bation,

Sreg =
∑

k∈M

∞∑

n=1

uk,nεn2δ2−yk

∫
dx [enδX0

φk](x) . (3.13)

One may wonder why we did not expand Sreg into “Fourier modes” : e−iωX0 :, as has

been done e.g. in [1]. In this case one would find fields in the boundary action with

arbitrarily negative conformal dimensions, which would in particular create problems in

the application of RG techniques. We have included all the near marginal boundary fields

which are generated in the OPE of the perturbing field [eδX0φ0](x) with itself.

The conditions for the ε-independence of the correlation functions are then found to

be

ε
duk,n

dε
= (yk − n2δ2)uk,n −

∑

i,j∈M

n−1∑

m=1

Cij
kui,muj,n−m , (3.14)

lim
ε→0

u0,1 = λ , lim
ε→0

uk,nεn2δ2−yk = 0 . (3.15)

These equations can be solved recursively,

u0,1 = λ , uk,1 = 0 , uk,n =
1

yk − n2δ2

∑

i,j∈M

n−1∑

m=1

Cij
kui,muj,n−m . (3.16)

This is also a fixed point of (3.14), as was to be expected because our original perturbation

was truly marginal. The equations above can be translated into a system of evolution

equations by introducing

Uk(t) =

∞∑

n=1

uk,nenδt . (3.17)

It easily follows that Uk(t) is a solution of the equations

Ük(t) = ykUk(t) −
∑

i,j∈M

Cij
kUi(t)Uj(t) (3.18)

supplemented by the boundary conditions

U0(t) = λeδt + O(e2δt) , Uk(t) = O(e2δt) , k 6= 0 . (3.19)

When we compare this system with the renormalization group equations (2.14) of the

time-independent treatment, we clearly would not expect any simple relation between the

solutions to the respective equations. We will see an explicit example in a moment.

The leading behaviour for δ → 0 of time dependent correlators 〈. . .〉λ is then given as

〈
. . .

〉
λ

=
〈
. . .

〉
Bδ⊗N

−
∑

k∈F

∞∑

n=1

uk,nεn2δ2−yk

∫
dτ

〈
. . . [enδX0φk](τ)

〉
Bδ⊗N

. (3.20)
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Of particular interest is the amplitude A(a, t) defined in equation (3.9) above. The leading

behavior of this quantity may be represented as

A(a, t) ∼
δ→0

〈〈 a, t |Bδ 〉〉stat −
∑

k∈F

∞∑

n=1

uk,nεn2δ2−yk

∫
dτ 〈〈 a, t | [enδX0φk](τ) |Bδ 〉〉stat

∼
δ→0

〈 a |Bδ 〉S −
∑

k∈F

Uk(t)

∫
dτ 〈 a |φk(τ) |Bδ 〉S . (3.21)

We observe that to leading order in δ one may represent the time-dependence of the per-

turbed amplitudes A(a, t) rather simply in terms of the solutions to the evolution equations

(3.18).

A few comments are at order at this point. A priori we may expect the representation

(3.21) to be useful only for times t which are sufficiently small to ensure the convergence of

the series (3.17). The possibility to find representations for the amplitude A(a, t) valid for

all times t depends crucially on whether the dynamics defined by the equations (3.18),(3.19)

will remain bounded or not. If not, one would violate the condition that Uk = O(δ) after

some time. The possibility of unbounded motions is raised by the fact that the right hand

side of (3.18) is the force from a cubic potential which is unbounded from below. We will

not be able to offer a general answer to this question, but we will prove boundedness of

the dynamics defined by (3.18),(3.19) in two interesting cases below.

If the functions Uk(t) have a well defined limit as t → ∞ it necessarily has to be a

fixed point of the time-independent RG flow. However, without more information, there is

no reason to expect this fixed point will be the same as the the end point of the RG flow

that is generated by the boundary field φ0. We will indeed illustrate in the next subsection

that this is not the case in general.

Let us finally remark that both the evolution equations and the RG equation for the

time independent system are scheme dependent in general. Furthermore, there is no reason

to suppose that a scheme chosen for one system should be related to a scheme chosen for

the other in a simple way. However, as argued in section 2.4, the leading behaviour of both

systems for δ → 0 is scheme independent.

3.3 Toy example : a single marginal field

We continue our example from section 2.3. To create the time-dependent version of this

system, we couple our single near marginal field to the time-like boson,

S = λ

∫
dx [eδX0

φ](x) . (3.22)

Using the technology of RG, this leads us to consider the more general perturbation,

Sreg =
∞∑

n=1

unε(n2−1)δ2

∫
dx[enδX0

φ](x) , (3.23)

and the RG equations,

ε
dun

dε
= (1 − n2)δ2un −

n−1∑

m=1

Cumun−m , lim
ε→0

u1 = λ , lim
ε→0

unεn2δ2−yk = 0 . (3.24)
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Which have the solution

un = (−1)n−1nλ

(
Cλ

6δ2

)n−1

. (3.25)

To understand the solution better we consider the combination

U(t) =

∞∑

n=1

unenδt =
3y

2C

1

cosh2 δ(t−t0)
, eδt0 =

6yλ

C
. (3.26)

Which satisfies

Ü(t) = δ2U(t) − C U(t)2 . (3.27)

This is the equation of motion for a particle in a cubic potential. The solution above

represents the particle leaving U = 0 in the infinite past, falling toward the minimum

U∗ = δ2

C
, moving on up the other side before coming to instantaneous rest at a point

U(t0) = 3
2U∗. The particle then returns to U = 0 in the infinite future.

For systems with only a finite number of nearly marginal fields, such oscillatory be-

haviour will be generic. To find a system of a dissipative nature, we need an infinite number

of fields, as is found in the example that we will consider next.

4. (Perturbed) Liouville BCFT

Liouville theory on the upper half plane U is defined semiclassically by means of the action

SL[φ] ≡ 1

π

∫

U

d2z
(
∂φ∂̄φ + πµe2bφ

)
+ µB

∫

R

dx ebφ . (4.1)

The corresponding boundary conditions for the Liouville field are of Neumann-type,

i(∂ − ∂̄)φ = 2πbµB ebφ . (4.2)

One of the interesting implications of the exact solution of boundary Liouville theory [5,

7, 8, 10, 11] is the fact that the boundary conditions of the corresponding quantum theory

are not uniquely parametrized by the parameter µB which appears in the classical case

(4.2). For each value of µB there are countably many different boundary conditions which

have quite different physical properties. In the following we will elaborate on the string

theoretical consequences of this phenomenon, extending the previous discussion in [11].

We will exclusively consider the case b = 1 in this paper, which corresponds to central

charge cL = 25. The primary fields of the theory are distinguished by their conformal

weights, ∆, and will be denoted by Vα(τ, σ) in the bulk and ΦP (x) on the boundary. The

labels P and α will be used interchangably and are related to each other and the conformal

weight via ∆α = 1 + P 2 = α(2 − α), α = 1 + iP .
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4.0.1 Boundary state

The boundary states which correspond to the classical boundary condition (4.2) were first

presented in [5]. They can be represented as Ishibashi-states |P 〉Ish,

|Bδ〉L =

∫ ∞

0

dP

2π
Aδ

P |P 〉Ish (4.3)

where |P 〉Ish is the Ishibashi state built upon the bulk Liouville heighest weight state

|P 〉 corresponding to the vertex operator Vα. The one-point function Aδ
P depends on a

parameter δ which is related to the boundary cosmological constant µB via5

cos π(1 + δ) =
µB√

µ
. (4.4)

The explicit expression for the coefficients Aδ
P is then given as

Aδ
P =

cosh(2πP (1 + δ))

2 (sinh 2πP )2
Θ(P ), Θ(P ) :=

4πiP µiP

(Γ(1 + 2iP ))2
. (4.5)

It has turned out to be useful to split off the function Θ(P ) as a normalizing factor.

We will mainly be interested in the case of small values of δ, which corresponds to the

region around the first minimum of µB = µB(δ) on the real positive half-axis. Bear in mind

that −δ corresponds to the same value of µB.

4.1 Hamiltonian picture - closed string channel

We would like to understand the qualitative differences between the cases δ > 0 and δ < 0.

Some useful insight can be obtained by considering the Hamiltonian picture for Liouville

theory which is naturally associated to the world-sheet being the cylinder. The boundary

state is considered as description for the initial state at τ = 0. We may consider expectation

values like

〈 0 |Vαn(τn, σn) . . . Vα1
(τ1, σ1) |Bδ 〉L . (4.6)

It is natural to interpret the zero mode φ0 ≡
∫ 2π

0 dσφ(σ) as a coordinate for the target

space of Liouville theory. In order to discuss localization properties in the target space it

is useful to think about the states in HL in terms of the Schrödinger representation6 for

the zero mode φ0. States |Ψ〉L are then represented by wave-functions Ψ(φ0) ∈ H(φ0), and

the norm ‖Ψ‖2 is represented in the form

‖Ψ ‖2 ≡
∫

dφ0 ‖Ψ(φ0) ‖2
H(φ0) . (4.7)

The norm density ‖Bδ(φ0) ‖2
H(φ0) of the wave-function associated to the boundary state

|Bδ 〉L can then be seen as describing the “profile” of the D-branes associated to the bound-

ary condition with label δ. At present we do not know how to calculate these profiles

5Other parametrizations have been used in the literature. δ is related to the parameter σ from [10, 11]

as 2σ = 1 − δ, whereas the parameter s from [5] is related to δ as s = i(1 + δ).
6The zero mode φ0 is an operator which can be constructed from the exponential fields of Liouville

theory [6]. It is unbounded, but well-defined on a dense domain, symmetric, φ
†
0 = φ0, and it seems likely

that φ0 has a self-adjoint extension.
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explicitly, but the asymptotic behavior can be read off from the asymptotic behavior of the

one-point function for P → 0 and P → ∞ respectively. In order to see this let us consider

the representation of Aδ
P as an overlap,

Aδ
P = 〈P |Bδ 〉L =

∫
dφ0 〈ΨP (φ0) |Bδ(φ0) 〉H(φ0) . (4.8)

Let us first consider the asymptotics φ0 → −∞. One should keep in mind that the wave-

function ΨP (φ0) behaves as [9, 6]

ΨP (φ0) ∼
φ0→∞

(
e2iPφ0 + R(P )e−2iPφ0

)
Ω , (4.9)

where Ω is the Fock vacuum, and R(P ) is the reflection amplitude. The divergence found

in the wave-function of the boundary state when P → 0,

|Aδ
P | ∼

P→0

1

2πP
(4.10)

is most naturally explained if Bδ(φ0) approaches a constant for φ0 → −∞.

In order to discuss the asymptotics of Bδ(φ0) for φ0 → +∞ let observe that these

asymptotics are related to the asymptotics for P → ∞ of Aδ
P . Indeed, for large P one

may expect that the rapid oscillations of the wave function ΨP (φ0) will average out the

contributions to the integral (4.8) from a large range of values of φ0. This range is roughly

bounded from above by the turning point of the motion of a string in the purely repulsive

Liouville potential. The purely repulsive nature of the potential furthermore implies that

ΨP (φ0) will decay rapidly for φ0 → +∞. It follows that the main contributions to the

integral (4.8) come from the region around the turning point of the motion of a string in

the Liouville potential. The latter will grow with P . The asymptotics of |Aδ
P | for large P

|Aδ
P | =

sinh(2π(1 + δ)P )

sinh(2πP )
∼

P→∞
e2πδP , (4.11)

therefore reflects the asymptotics of the wave-function Bδ(φ0) for φ0 → ∞. Note in par-

ticular that the latter depends decisively on the sign of δ.

The resulting picture looks as follows: For each value of µB we find two different

boundary states with −1 < δ < 1 distinguished by the value of sgn(δ), one of which

(sgn(δ) > 0) has a strong growth of the profile M(φ0) ≡ ‖Bδ(φ0)‖2 for φ0 → ∞. In string

theoretic terms one may interpret this fact as the existence of a concentration of “mass”

(in the sense of source for closed strings) for large values of φ0 on those D1 branes which

have δ > 0. An intuitive way to visualize the profiles for the two cases δ < 0 and δ > 0 is

given in figures 1 and 2 respectively.

4.2 Boundary fields

It is sometimes useful to observe (see appendix B for more details) that fields Φδ
α(σ) local-

ized on the boundary can be defined with the help of

Φδ
P (σ) |Bδ 〉L ≡ Cδ(P ) lim

τ→0
(2τ)2∆α−∆2α Vα(τ, σ) |Bδ 〉L , (4.12)
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M

φ0

Figure 1: Qualitative visualization of the D1 brane profile M(φ0) for δ < 0.

M

φ0

Figure 2: Qualitative visualization of the D1 brane profile M(φ0) for δ > 0.

where P and α are related by α = 1 + iP . Cδ(P ) is a certain normalizing factor defined

in appendix A that we do not need explicitly except at the point Cδ(iδ) = 0. It has

been chosen in such a way that the boundary fields Φδ
P (σ) are symmetric under P → −P ,

Φδ
P (σ) = Φδ

−P (σ). It will later be important for us to observe that the asymptotics of

Φδ
i$(x) for φ0 → −∞ can be represented as follows

Φδ
i$(x) ∼

φ0→−∞
eφ0

(
Cδ(i$) :e−$φ :+Cδ(−i$) :e+$φ :

)
(4.13)

The first term is directly understood from Vα(τ, σ) ∼: e2αφ(τ, σ) :, the second is found

taking into account that Φδ
P (σ) = Φδ

−P (σ).

In order to characterize the boundary fields Φδ
P (x) completely we need to know both

the operator product expansions (OPEs) and the three point functions of these fields. The

OPE is known [11] to be of the form

Φδ
P2

(x2)Φ
δ
P1

(x1) =

∫ ∞

0
dP3 F

P3

P2P1
|x2 − x1|∆P3

−∆P2
−∆P1 Φδ

P3
(x1) (4.14)

+fϑ
P2P1

|x2 − x1|∆ϑ−∆P2
−∆P1 Φδ

ϑ(x1) + descendants .

Of particular importance for us is the term in the second line of (4.14) which is proportional

to the field Φδ
ϑ(x1), with ϑ being defined as

ϑ = iδ . (4.15)

The field Φδ
ϑ(x1) has conformal dimension ∆ϑ = 1− δ2 < 1. It will therefore correspond to

an open string tachyon in the c = 1 noncritical string theory that we are about to study.
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The fact that Φδ
ϑ(x1) appears discretely in (4.14) indicates that it creates a bound state

in the spectrum of boundary Liouville theory on the strip, as will be further discussed in

subsection 4.3 below. The OPE coefficient fϑ
P2P1

is nonvanishing only if δ > 0.

We will need the explicit formula for the OPE coefficients F
P3

P2P1
only in the case when

δ → 0 with Pk = O(δ), k = 1, 2, 3,

F
P3

P2P1
∼

δ→0

1

2π

4P 2
3

δ2 + P 2
3

. (4.16)

This formula is proven in the appendix B. As noted above, we have fϑ
P2P1

= 0 for δ < 0.

The OPE is then defined for δ > 0 by analytic continuation with respect to the parameter

δ, see [11] for more details. One picks up extra contributions from poles of F
P3

P2P1
which

cross the contour of integration in (4.14). It then follows easily from (4.16)

fϑ
P2P1

= −2πi Res
P3=iδ

F
P3

P2P1
∼

δ→0
2δ . (4.17)

Note that the formulae (4.16) and (4.17) also cover the cases when P2 or P1 take the value

ϑ.

We will also need the bulk-boundary structure function 〈P1 |Φδ
P2

(1) |Bδ 〉L. It is shown

in appendix B that in the limit δ → 0, P2 = O(δ) we find the following behavior

〈P1 |Φδ
P2

(1) |Bδ 〉L ∼
δ→0

1

2π

2πP1

sinh 2πP1

Θ(P1) , (4.18)

which is independent of P2.

4.3 Hamiltonian picture - open string channel

There is an alternative Hamiltonian representation which is associated to the world-sheet

being the strip S. The corresponding Hilbert space of the boundary Liouville theory with

boundary condition parametrized by δ on both sides of the strip may then be represented

as follows [7, 11]

HB
δδ =

∫ ⊕

R+

dP VP ⊕
{

∅ for δ < 0 ,

Vϑ for δ > 0 ,
(4.19)

where VP is the irreducible unitary representation of the Virasoro algebra with c = 25

which has highest weight ∆P = 1+P 2. State-operator correspondence therefore yields the

usual relation between the OPE (4.14) of boundary fields to a summation over a basis for

the Hilbert space HB
δδ .

We want to show that the additional contributions which occur in the spectrum (4.19)

can be interpreted as bound states. This can be seen more clearly by representing the states

in terms of the Schrödinger representation for the zero mode φop
0 ≡

∫ π

0 dσ φ(σ, τ)
∣∣
τ=0 .

which

is naturally associated to the given Hamiltonian picture. The eigenstates of the Hamitonian

H are then represented by wave-functions ΨP (φop
0 ) which have an asymptotic behavior for

φop
0 → −∞ of the following form

ΨP (φop
0 ) ∼

φ
op
0 →−∞

(
Cδ(P )eiPφ

op
0 + Cδ(−P )e−iPφ

op
0

)
Ω (4.20)
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where Ω is the Fock vacuum. Our previous observation that Cδ(ϑ) = 0 therefore implies

the exponential decay of Ψϑ(φop
0 ) for φop

0 → ∞ characteristic for a bound state.

In the context of the c = 1 noncritical string theory there will be a single physical

state |ϑ〉〉 which is constructed by tensoring the highest weight state in Vϑ with a suitable

“dressing” from the CFT associated to the time direction X0. From the string theoretical

point of view it therefore seems natural to interpret the concentration of “mass” as depicted

in figure 2 as a potential sink for the open strings on the D1 branes. The attractive force

associated with the potential sink may bind open strings.

4.4 Perturbed boundary Liouville theory

We will consider the perturbation of boundary Liouville theory which corresponds to the

boundary action

SBd = λ

∫

∂Σ
dx Φδ

ϑ(x) (4.21)

The perturbed boundary state is then formally defined as

|Bδ 〉pert
L = e−SBd |Bδ 〉L . (4.22)

Our aim is to extract the leading behavior of the perturbed boundary state |Bδ 〉
pert
L for

δ → 0. As discussed in section 2 we may use the renormalization group to resum the relevant

contributions of the perturbative expansion in powers of λ into renormalized couplings.

4.4.1 RG flow equations

In order to apply the discussion from section 2 to the case at hand let us introduce a proper

regularization scheme with cut-off ε and consider the boundary action

Sren
Bd =

∫

∂Σ
dx

(
u ε−δ2

Φδ
ϑ(x) +

∫ ∞

0
dP λ(P ) εP 2

Φδ
P (x)

)
, (4.23)

which contains the renormalized coupling constants u ≡ uε and λ(P ) ≡ λε(P ). We have

included contributions containing the irrelevant fields Φδ
P (x) since fields with P = O(δ)

are nearly marginal. Independence of the correlation functions from the cut-off ε follows if

the coupling constants satisfy the RG flow equations:

ε
d

dε
u−δ2u = −fϑ

ϑϑu2 − 2

∞∫

0

dP1 fϑ
ϑP1

λ(P1)u −
∞∫

0

dP2dP1 fϑ
P2P1

λ(P1)λ(P2) (4.24)

ε
d

dε
λ(P )+P 2λ(P ) = −FP

ϑϑu2 − 2

∞∫

0

dP1 FP
ϑP1

λ(P1)u −
∞∫

0

dP2dP1 FP
P2P1

λ(P1)λ(P2)

Let us analyze the equations at or near the new fixed point. Equations (4.24), (4.16),

(4.17) then suggest that λ(P ) must be peaked for small P . Plugging in the approximate

formulae (4.16), (4.17) one simplifies the RG flow equations to

ε
d

dε
u = δ2u − 2δw2 , (4.25)

ε
d

dε
λ(P ) = −P 2λ(P ) − 1

2π

4P 2

δ2 + P 2
w2 , (4.26)
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where

w ≡ u +

∫ ∞

0
dP λ(P ) . (4.27)

We may observe that the RG flow equations have a fixed point λ∗(P ). First note that one

can determine the P -dependence of λ∗(P ) for P ∈ R+ from (4.26) and (4.27) to be

λ∗(P ) =
2

π

δ v∗
δ2 + P 2

, v∗ ≡
∫ ∞

0
dP λ∗(P ) . (4.28)

Inserting this into (4.26) yields the following equations for the fixed point values u∗ and

v∗:

0 = δu∗ − 2(u∗ + v∗)
2 , (4.29)

0 = −δv∗ − (u∗ + v∗)
2 . (4.30)

This implies in particular that

u∗ = 2δ , v∗ = −δ , w∗ = u∗ + v∗ = δ , (4.31)

are the coupling constants at the new fixed point of the renormalization group.

4.4.2 Determination of the new fixed point

We will next determine the perturbed boundary state |B∗〉 at the new RG fixed point. We

claim that

|B∗ 〉pert
L = |B−δ 〉L . (4.32)

In order to verify (4.32) let us first note that the new fixed point must have the same value

of µB. This can be seen as follows. We had previously seen that the wave-function of the

boundary state Bδ(φ0) approaches a constant for φ0 → −∞. Subleading contributions for

φ0 → −∞ that decay exponentially will produce poles in amplitudes such as Aδ
P = 〈P |Bδ〉L

which come from the asymptotic behavior of the integrand in (4.8). The next-to leading

order contribution to Bδ(φ0) is of the order eφ0 which corresponds to the pole of Aδ
P at

P = −i/2, see (4.5). It is important to note that this contribution is proportional to µB,

as may also be inferred from (4.5). Note, however, that the perturbing boundary field

Φδ
ϑ(x) behaves asymptotically as e(1+δ)φ0 . Indeed, a generic boundary field Φδ

i$(x) has

asymptotic behavior of the form given in equation (4.13). The first term in (4.13) vanishes

in the case of the perturbing boundary field Φδ
ϑ(x) as follows from Cδ(iδ) = 0. This means

that the perturbative expansion of |Bδ〉
pert
L in powers of λ will only generate terms which

vanish faster than eφ0 when φ0 → −∞. The value of µB must therefore be unchanged.

In order to further confirm our prediction (4.32) let us calculate, to lowest order in δ,

the deviation d∗(P ):

d∗(P ) = 〈P |B∗ 〉L − 〈P |Bδ 〉L . (4.33)

We find

d∗(P ) ∼
δ→0

− 2π u∗ 〈P |Φδ
ϑ(0) |Bδ 〉L

− 2π

∫ ∞

0
dP ′ λ∗(P

′) 〈P |Φδ
P ′(0) |Bδ 〉L . (4.34)
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The relevant bulk-boundary correlation functions are given in equation (4.18). Note that

they are independent of P ′. We may therefore carry out the integral over P ′ in (4.34) by

using the definition of v∗ given in (4.28). It follows that

d∗(P ) ∼
δ→0

−2π w∗ 〈P |Φδ
ϑ(0) |Bδ 〉L . (4.35)

By using equations (4.31) and (4.18) we arrive at the following formula for the perturbed

one point function at the new fixed point:

d∗(P ) ∼
δ→0

−δ
2πP

sinh 2πP
Θ(P ) . (4.36)

This is the same result as one would have found from (4.32) by keeping terms up to O(δ).

The time-independent treatment described in this section may lead one to conjecture

that there should exist a time-dependent solution of string theory which interpolates be-

tween asymptotic states that are D1 branes with labels δ and −δ respectively. This is what

we are going to construct in the following section.

5. A noncritical time-dependent string background

We now want to apply the formalism developed in section 3 to the case that the CFTS, the

conformal field theory which describes the spatial part of the background is (boundary)

Liouville theory with c = 25. The boundary action which will define the perturbed time-

dependent background is then given by the expression

SBd ≡ λ

∫

∂Σ
dx [eδX0Φδ

ϑ](x) . (5.1)

Note that the short distance singularities in the OPE of [eδX0Φδ
ϑ](x) with itself are inte-

grable. It follows that (3.3) indeed defines a conformal boundary state to all orders in a

formal expansion in the parameter λeδt.

In order to describe the time evolution of the perturbed boundary state |Bδ 〉〉dyn we

will consider the amplitude

A(P, t) ≡ 〈〈P, t |Bδ 〉〉dyn , 〈〈P, t | ≡ 〈P | ⊗ 〈 t |X0
, (5.2)

from which the corresponding amplitude

A(P,ω) ≡ 〈〈P,ω |Bδ 〉〉dyn , 〈〈P,ω | ≡ 〈P | ⊗ 〈ω |X0
(5.3)

will then follow by Fourier transformation.

5.1 RG improvement in the case of a near-marginal continuum

In order to employ the technique from section 2 to our specific example let us assume

having introduced a proper regularization scheme with a short-distance cut-off ε. We will
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consequently have to work with a renormalized boundary action density Sren
Bd (x) which will

be of the form

Sren
Bd (x) =

∞∑

n=1

(
Unε(n2−1)δ2

[enδX0Φδ
ϑ](x) +

∞∫

0

dP λn(P )εn2δ2+P 2

[enδX0Φδ
P ](x)

)
. (5.4)

The conditions for the ε-independence of the correlation functions are then found to be the

equations

ε
d

dε
Un + (n2 − 1)δ2Un = (5.5)

=

n−1∑

m=1

(
−fϑ

ϑϑUmUn−m − 2

∞∫

0

dP1 fϑ
ϑP1

Umλn−m(P1) −
∞∫

0

dP2dP1 fϑ
P2P1

λm(P1)λn−m(P2)
)

,

ε
d

dε
λn(P ) + (n2δ2 + P 2)λn(P ) = (5.6)

=

n−1∑

m=1

(
−FP

ϑϑUmUn−m − 2

∞∫

0

dP1 FP
ϑP1

Umλn−m(P1) −
∞∫

0

dP2dP1 FP
P2P1

λm(P1)λn−m(P2)
)

.

Removing the cut-off ε by sending ε → 0 should reproduce the bare action (3.4). This

means that we are interested in the solution to (5.5) which is defined by the following

supplementary conditions:

lim
ε→0

λn(P )εn2δ2+P 2

= 0 for P ∈ R+ ,

lim
ε→0

Unε(n2−1)δ2

= 0 for n > 1 ,

lim
ε→0

U1 = νδ .

(5.7)

λ ≡ νδ is the value of the corresponding “bare” coupling introduced in (3.3). It will again

turn out to be useful to measure λ in units of δ by introducing ν = λ/δ.

Equations (5.5), (5.7) can be solved recursively. It is easy to see that we must have

U1 = λ and λ1(P ) = 0 for P ∈ R+. For n > 1 let us note that a special solution to

the inhomogenous equations (5.5) is always given by ε-independent coupling constants

λn(P ). The general solution of the equations (5.5) is then obtained by adding an arbitrary

solution to the homogeneous equations which are obtained from (5.5) by dropping the right

hand side. However, the solutions to these homogeneous equations will never satisfy the

boundary conditions (5.7) unless they are identically zero. We therefore find that λn(P ) is

determined for n ≥ 2 from the recursion relations

(n2δ2 + P 2)λn(P ) = (5.8)

−
n−1∑

m=1

(
FP

ϑϑUmUn−m + 2

∞∫

0

dP1 FP
ϑP1

Umλn−m(P1) +

∞∫

0

dP2dP1 FP
P2P1

λm(P1)λn−m(P2)

)
.

It follows that λn(P ) ∝ (n2δ2 + P 2)−1 is strongly peaked around P = O(δ). Noting that

the OPE coefficients FP
P2P1

are approximately constant in this region, cf. eq. (4.16), allows
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us to get the δ → 0 asymptotics of the integrations over P2, P1 by introducing a rescaled

momentum variable

q = P/δ (5.9)

and substituting the asymptotic values (4.16) at fixed qi’s into (5.8). Define

Vn ≡
∫ ∞

0
dP λn(P ) . (5.10)

One finds then from (5.8), (4.16) that the P -dependence of λn(P ) (at δ → 0) can be written

in the form

λn(P ) = λn(qδ) =
Vn

δ

n + 1

n2 + q2

4q2

2π(1 + q2)
. (5.11)

One further finds that (5.5) and (5.6) lead to a closed set of equations for the coupling

constants Vn and Un,

(n2 − 1)δUn = −2Rn ,

(n + 1)δVn = −Rn ,
Rn ≡

n−1∑

m=1

(
UmUn−m + 2UmVn−m + VmVn−m

)
. (5.12)

These recursion relations combined with the initial conditions

U1 = δν, V1 = 0 , (5.13)

completely determine the coupling constants Un and λn(P ) via (5.11). It is easy to show

that (5.12) and (5.13) imply that Un = O(δ) and Vn = O(P ). The integral over P in (5.4)

will also be of the order δ since λn(P ) is peaked around P = O(δ). In order to extract the

leading behavior of |Bδ 〉〉dyn for δ → 0 we may therefore indeed work with the renormalized

action (5.4) in the following.

5.2 Perturbed one point function

As a simple example for the application of our findings let us now consider the amplitude

A(P, t). It will be convenient to subtract the constant initial value of this quantity and

consider

D(P, t) ≡ 〈〈P, t |Bδ 〉〉dyn − 〈〈P, t |Bδ 〉〉stat . (5.14)

According to the discussion in our previous subsection we may calculate this quantity to

leading order in δ by expanding (5.4) to the first order,

D(P, t) ∼
δ→0

− 2π U(t) 〈P |Φδ
ϑ(0) |Bδ 〉L

− 2π

∫ ∞

0
dP ′ λP ′(t) 〈P |Φδ

P ′(0) |Bδ 〉L , (5.15)

where we have used the notations

λP (t) =

∞∑

n=1

eδntλn(P ) , U(t) =

∞∑

n=1

eδntUn , (5.16)
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The relevant correlators are given in equation (4.18). Note that they are independent of

P ′. We may therefore carry out the integral over P ′ in (5.15) as follows:

∫ ∞

0
dP ′ λP ′(t) =

∞∑

n=1

eδnt

∫ ∞

0
dP ′ λn(P ′) =

∞∑

n=1

eδntVn ≡ V (t) . (5.17)

Inserting the explicit expression (4.18) leads to

D(P, t) ∼
δ→0

−W (t)
2πP

sinh 2πP
Θ(P ) , W (t) ≡ U(t) + V (t) . (5.18)

The task remains to calculate W (t) explicitly. Note that so far we had to assume that t

is sufficiently small. We will indeed see that the range of convergence of the series (5.16)

is finite. However, the function W (t) will turn out to have an analytic continuation which

allows us to extend the definition of D(P, t) to all real values of t.

5.3 Time evolution

The recursion relations (5.12) are easily translated into differential equations for the gen-

erating functions (5.16),

δ−1Ü = δU − 2W 2,

V̇ = −δV − W 2,
W ≡ U + V . (5.19)

The dots indicate derivative with respect to t. In this section we will find the explicit

solutions to the time-evolution equations (5.19) with the boundary conditions (5.13). This

will then allow us, using (5.11), to find the function λP (t).

To begin with, let us note that the time evolution equations (5.19) can be rewritten in

the form

Ü = −2δ
∂P
∂U

, V̇ = −∂P
∂V

, (5.20)

where

P = P(U, V ) = −δ

4
U2 +

δ

2
V 2 +

1

3
(U + V )3 . (5.21)

The existence of such a “potential” function P(U, V ) can be traced back to the cyclic

symmetry of the OPE coefficients. However equations (5.20) are clearly not the standard

Euler-Lagrange equations for two mechanical degrees of freedom due to the first order

derivative term V̇ . The dissipative nature of this system of equations can be discerned by

looking at the time derivative

d

dt

[
1

4δ
U̇2 + P(U, V )

]
= −(V̇ )2 ≤ 0 . (5.22)

Here in the square brackets we have an expression that can be thought of as an effective

energy for the U -degree of freedom which ought to monotonically decrease due to this

identity.

Although as we have just demonstrated the energy is no longer an integral of motion

for equations (5.20), there is another integral of motion. One can easily show that

d

dt

[
eδt(δ−1U̇ − U − 2V )

]
= 0 . (5.23)
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Using the initial conditions at t → −∞, that are essentially given by the fact that our

solutions in that limit can be represented as power series (5.16), we see that the integral

of motion in (5.23) assumes zero value. This reduces (5.20) to a system of first order

differential equations

U̇ = δ(U + 2V )

V̇ = −δV − (U + V )2 . (5.24)

One further observes that the W = U + V degree of freedom decouples:

Ẇ = δW − W 2 . (5.25)

Solving this equation we obtain

W (t) =
δeδt

C + eδt
, (5.26)

where C is a constant of integration. Substituting (5.26) back into (5.24) we obtain

U(t) = 2δ[1 − Ce−δt ln(1 + C−1eδt)] = δ
∞∑

n=1

(−1)n+1enδtC−n , (5.27)

V (t) = W (t) − U(t) = δ

∞∑

n=2

(−1)n
(

1 − n

1 + n

)
C−nenδt (5.28)

The integration constant C is found to be related to the bare coupling λ = νδ by observing

that (5.27) implies U1 = δC−1. Taking into account the condition (5.7) therefore yields

the relation

C = δλ−1 = ν−1 . (5.29)

We are left with the task to calculate λP (t) explicitly. Plugging the coefficients Vn

from (5.28) into (5.11) we obtain

λ(q, t) ≡ λqδ(t) =

∞∑

n=1

λn(qδ)enδt =
2q2

π(1 + q2)
λ̃(q, t) ,

λ̃(q, t) =

∞∑

n=2

1 − n

n2 + q2
(−νeδt)n . (5.30)

The function λ̃P (t) can be represented as

λ̃(q, t) = fq(t) − δ−1 d

dt
fq(t) (5.31)

where

fq(t) = − νeδt

2q(q2 + 1)

[
(q − i) 2F1(1 − iq, 1; 2 − iq;−νeδt)+

+ (q + i) 2F1(1 + iq, 1; 2 + iq;−νeδt)
]
. (5.32)

Formulas (5.30), (5.31), (5.32) provide explicit expressions for the time-dependent couplings

λP (t) via hypergeometric functions.
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5.4 Asymptotics t → ∞
Having found the explicit expression (5.26) for the function W (t) we may now return to

the discussion of the perturbed one point function A(P, t). Observing that the expression

(5.26) is well-defined for all values of t will not only allow us to to discuss the asymptotics

of A(P, t) for t → ∞, it will also finally give us the leading order result for the amplitude

A(P,ω).

To begin with, let us observe that the asymptotic values

lim
t→∞

U(t) = 2δ = u∗ , lim
t→∞

V (t) = −δ = v∗ , lim
t→∞

W (t) = δ = w∗ , (5.33)

coincide with the fixed point values u∗, v∗ and w∗ that we had found in the time-independent

treatment of subsection (4.4.1). The time evolution of U and V therefore smoothly inter-

polates between the values of the corresponding couplings at the UV and IR fixed points

in the time-independent picture. The corresponding asymptotic values of A(P, t) can be

identified with the overlaps 〈P |Bδ〉L and 〈P |B∗〉L, respectively. Let us finally remark that

the values u∗, v∗ correspond to a local minimum of the “potential” function P (5.21).

It will also be quite suggestive to look at the asymptotics of λ(q, t) for t → ∞. It can

be deduced from the asymptotic of the hypergeometric function for |x| → ∞,

2F1(1 − iq, 1; 2 − iq;x) →
|x|→∞

(−x)−1 q + i

q
+ (−x)−1−iqΓ(2 − iq)Γ(iq) . (5.34)

Using this asymptotics we obtain

λ(q, t) → − 2

π(1 + q2)
+

1

sinh(πq)

(
eiqδtνiq q

1 + iq
+ e−iqδtν−iq q

1 − iq

)
. (5.35)

The first term, which is time independent, coincides with the fixed point function λ∗(P )

given in (4.28), (4.31). Together with the asymptotic values (5.33) this implies that the

stationary part of the t → ∞ asymptotics of the coupling constants corresponds to the

fixed point found in subsection 4.4 which we had identified with the D1 branes labelled by

the parameter −δ. The oscillatory part of (5.35) corresponds to a perturbation of this fixed

point background by marginal operators Φδ
P e±iPX0 with appropriate coupling constants.

This time-dependent piece can be interpreted as open string radiation on top of the D1

brane with label −δ.

In order to round off the discussion let us finally calculate D(P,ω) ≡ 〈〈P,ω|Bδ〉〉dyn −
〈〈P,ω|Bδ〉〉stat. We simply have to perform the inverse Fourier transformation from 〈 t |X0

to 〈ω |X0
by using

Ŵ (ω) ≡
∫

R

dt

2π
eiωt W (t) =

iν−i ω
δ

2 sinh
(
π ω

δ

) . (5.36)

We arrive at the expression

D(P,ω) ∼
δ→0

− iν−i ω
δ

2 sinh
(
π ω

δ

) 2πP

sinh 2πP
Θ(P ) , (5.37)

from which the closed string emission in the decay of a D1 brane with parameter δ into a

D1 brane with parameter −δ can be calculated.
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6. Discussion

In this paper we analyzed a particular model of D1-brane decay in non-critical c = 1 string

theory. The presence of a small parameter δ responsible for the mass of the tachyon allowed

us to analyze quantitatively some features of the time-dependent CFT that describes the

tachyon condensation. In particular, employing the RG-resummation technique, we found

the boundary state for the model in the leading order in the δ-expansion. We could show

that in the t → ∞ limit the time-dependent CFT looks like a certain static background de-

scribing another D1-brane perturbed by a time-dependent marginal perturbation describing

an open string radiation propagating to infinity. We showed that the static D1-brane back-

ground at hand coincides with the end point of the RG evolution triggered by perturbing

the Liouville part of the theory by the relevant operator corresponding to the tachyon.

The issue of what is the relation between the RG flow triggered by a relevant operator

corresponding to the tachyon and the description of its condensation by a time-dependent

CFT was recently addressed in [1] in the framework of closed string theory. The RG-

equations are first order in the RG “time” and have a dissipative nature as demonstrated

in general by Zamolodchikov’s c-theorem. On the other hand the time-evolution equations

in target space are (at least quasiclassically) second order in time and, superficially, pre-

serve the total space-time energy. This seems naively to preclude any simple qualitative

relationship between the two. It was shown however in [1] that if one properly accounts

for dilaton couplings a damping force appears for the time-evolution equations for the rest

of the couplings. The last feature makes it in principle possible for the time evolution to

end in an RG fixed point accompanied by a time-dependent dilaton and some examples of

this situation were discussed in [1].

In the case of open string condensation no time-dependent dilaton couplings enter

the consideration at least at tree level. For the model studied in the present paper a

different type of relationship with RG flows was found. In this case the time-dependent

CFT describes a localized tachyonic degree of freedom interacting with a continuum of

open string scattering states. With the total energy being preserved the tachyonic degree

of freedom relaxes asymptotically into the RG fixed point at the expense of producing open

string radiation that escapes to infinity.

It seems natural to expect that generalizations of this mechanism will be applicable in

a wide range of situations where tachyons are localized in a non-compact target space and

the boundary conditions at infinity do not change in the course of tachyon condensation.

In the present case the dominant decay channel was open string radiation, but in other

cases like the example discussed in [11] one will find that most of the energy is carried away

by closed string radiation.

For the cases in which the tachyon condensation produces changes of the boundary

conditions at infinity the world sheet description is expected to be more subtle (see [14]

for a general discussion and [11] for some related observations concerning time-dependent

phenomena). Reaching the new fixed point requires giving an expectation value to a non-

normalizable operator that seems to be hard to generate (at least perturbatively) from

localized tachyons that are normalizable modes. One should also note that the very notion
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of radiation becomes problematic in such cases. In the case of the model of unstable D1

branes studied in this paper the new fixed point has the same value of µB and thus does

not involve changing the boundary conditions at infinity [11].

It may happen that an unstable system of D-branes decays into a state not carrying

any open string scattering states. In that case closed string radiation may be the dominant

mode of decay. For the present model the closed string radiation appears as a subdominant

effect proportional to the string coupling constant. It would be interesting however to

study back reaction effects on the open string tachyon condensation due to the closed

string radiation for the present model. We leave this issue for future work.

Another question that is worth clarification is a precise relation between the oscillatory

piece of the asymptotic (5.35 ) and open string pair creation as may be measured by a

suitable two-point function. This will require constructing marginal operators in the time-

dependent theory and finding their decomposition into in-coming and out-going scattering

states. We are planning to address these questions in future work.

At the technical level the present model may look very similar to localized closed

string tachyons in C/ZN non-supersymmetric orbifolds of critical superstrings (see [15] for

the initial discussion) for large values of N . The tachyon in those models lives in the

twisted sector and describes a localized degree of freedom. Its mass goes to zero when N

becomes very large so it looks like one has at his/her disposal a small parameter similar to

δ in the present model. It may therefore look appealing to apply methods of the present

paper to those models in the N → ∞ limit. There is however an important distinction

between the C/ZN theories and models analogous to the one studied in this paper. The

tachyon condensation in those models does involve changing boundary conditions at infinity.

Furthermore the world sheet analysis of [13, 12] seems to indicate that the final fixed point

for the RG flow is not reachable through the 1/N expansion. This unpalatable feature may

also be linked to the change of boundary conditions at infinity. It seems to be important

to understand better how to handle these models from the world sheet point of view.
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A. Perturbations with UV divergences

To simplify the discussion in sections 2 and 3 we had been assuming the absence of UV

divergencies. However, it will not be hard to show that the main results carry over to the

case when there are UV divergencies which arise from the presence of the identity field in

some operator product expansions.
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A.1 Comments on the time-independent case

As a typical example of where UV divergences would appear, consider a CFT with discrete

spectrum and let our near marginal field fuse with itself to give the identity,

φ0(τ)φ0(0) = C00
11

(
2 sin τ

2

)−2+2y0 11 + other terms . (A.1)

More generally, we can consider the field fusing to create many non-nearly marginal relevant

fields. To regulate these divergences one simply repeats the steps of section 2.2. A subtlety

comes in specifying renormalisation conditions to replace (2.15) which will no longer make

sense in general. One choice is to introduce a renormalisation scale Λ and define physical

couplings µ̂k via µ̂k=µk(Λ). Singular terms in the expression µk(ε) will then cancel similar

singularities in the perturbation expansion such that the resulting correlation functions are

finite and independent of ε.

However, through all this the renormalisation group equations (2.14) are unchanged.

It then follows that if all couplings are assumed to be small and the system flows to a non-

trivial fixed point of the RG-equations, the couplings to non-nearly marginal fields will be

O(δ2) and so can be ignored to this level in the analysis. Having reduced the system to that

involving only nearly-marginal fields, the leading δ-behaviour of the remaining couplings

µk(ε) is independent of ε and the results of the text apply.

In conclusion, even in the presence of UV divergences involving non-nearly marginal

fields, the leading behaviour of correlation functions is given by (2.23) wherein µk(ε) can be

calculated from the renormalisation group equations involving only nearly marginal fields.

In the case where the UV divergences come from nearly marginal fields, things are more

complicated and we have nothing to say at this time.

A.2 Time-dependent perturbations in the presence of divergencies

We would like to convince ourselves that the main features of the discussion in subsec-

tion 3.2 are still valid if there are divergencies in the perturbative expansion.

We will assume that the fields φa in the complement N = F \ M of the set of all

marginal fields M are all such that ya = O(1) when δ → 0. We use the letters a, b, c, . . . to

label the elements of N . δ2 will be identified with the largest possible value that yi takes

for φi ∈ M . To simplify life we will furthermore assume that all relevant OPE coefficients

Ck
ij , Ck

aj , Ck
ab, Cc

ij , Cc
aj and Cc

ab are of order O(1) when δ → 0.

We are then led to consider the regulated perturbation,

Sreg =

∞∑

n=1

[
∑

k∈M

uk,nεn2δ2−yk

∫
dx [enδX0

φk](x)

+
∑

a∈N

va,nεn2δ2−ya

∫
dx [enδX0

φa](x)

]
.

(A.2)
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Following the arguments in subsection 3.2 now leads to the following recursion relations

(yk − n2δ2)uk,n = (A.3)

=
n−1∑

m=1

[
∑

a,b∈N

Cab
kva,mvb,m + 2

∑

a∈N

∑

i∈M

Cai
kva,mui,n−m +

∑

i,j∈M

Cij
kui,muj,n−m

]
,

(yc − n2δ2)vc,n = (A.4)

=

n−1∑

m=1

[
∑

a,b∈N

Cab
cva,mvb,m + 2

∑

a∈N

∑

i∈M

Cai
cva,mui,n−m +

∑

i,j∈M

Cij
cui,muj,n−m

]
.

These equations are supplemented with the boundary conditions

uk,1 = κkδ
2 , uk,1 = 0 , va,1 = 0 . (A.5)

Keeping in mind that yc = O(1) we may easily deduce from (A.3), (A.4) that uk,n = O(δ2),

but vn = O(δ4). Working to leading order in δ2 we may therefore simplify (A.3) to

uk,n =
1

yk − n2δ2

n−1∑

m=1

∑

i,j∈M

Cij
kui,muj,n−m . (A.6)

It follows that the generating functions Uk(t) =
∑∞

n=1 uk,nenδt satisfy the same time evo-

lution equations (3.18) as before, and that the couplings va,n do not modify the leading

order result (3.21) for the correlation functions. However, the couplings v̂a,n = va,nεn2δ2−ya

may diverge when ε → 0. These divergencies cancel the divergencies which would arise in

the perturbative integrals when removing the cut-off ε.

As pointed out in subsection 3.2, it is not clear in general if the motion described

by the time evolution equations (3.18) will remain bounded. It will certainly not remain

bounded if the set N contains relevant fields not equal to the identity and if some of the

corresponding couplings va,1 do not vanish. The perturbative approach to the construction

of amplitudes in the time-dependent theory will then break down after a certain time t.

However, at least in the cases where the only relevant field contained in N is the identity

and where the couplings Uk(t) determined from the time evolution equations (3.18) stay

bounded, one may reliably use our formalism to calculate the one point functions in the

time dependent background.

B. Aspects of boundary Liouville theory

Certain results on boundary Liouville theory play an important role in our paper. The rele-

vant results include the approximate expression (4.16) for the operator product coefficients

F
P3

P2P1
of the boundary fields Φδ

P (x) respectively, as well as the relation (4.12) between bulk

and boundary fields. This appendix is devoted to the derivation of these results.

The boundary fields Φδ
P (x) used in this paper are related to the more general boundary

fields Ψσ2σ1

β (x) studied in [10] by a change of normalization,

Φδ
P (x) = gσσ

β Ψσσ
β (x) ,

{
β = 1 + iP ,

2σ = 1 − δ .

}
(B.1)
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The expression for gσσ
β from [10] may in the present case (c = 25, b = 1) be simplified to

gσσ
β = µ

β
2
r

Γ2(2)Γ2(2 − 2β)

(Γ2(2 − β))2
Γ2(2σ)Γ2(4 − 2σ)

Γ2(4 − 2σ − β)Γ2(2σ − β)
. (B.2)

The function Γ2(x) is known as the Barnes Double Gamma function. It may be represented

by the following integral [5]:

log Γ2(x) =

∞∫

0

dt

t

(
e−xt − e−t

(1 − e−t)2
− (1 − x)2

2et
− 2

1 − x

t

)
. (B.3)

It follows from (B.3) that Γ2(x) is analytic for Re(x) > 0.

B.1 Bulk-boundary OPE

Our first aim is to establish the relation (4.12) with Cδ(P ) defined by Cδ(P ) ≡ gσσ
β . This

relation is equivalent to the relation

Ψσσ
2α(σ) |Bδ 〉L ≡ lim

τ→0
(2τ)2∆α−∆2α Vα(τ, σ) |Bδ 〉L . (B.4)

This relation will be valid as long as −1 < δ < 0 and Re(α) < 1
2 . It can be used as

a definition of the boundary fields Ψσσ
β (σ) for general values of σ and β thanks to the

analyticity of the fields Ψσσ
β (σ) w.r.t. these variables [11].

Our starting point for the derivation of (4.12) is the form of the bulk-boundary OPE

valid for bulk fields Vα(z, z̄) which approach the boundary if −1 < δ < 0 and 3
2 > Re(α) >

1
2 ,

Vα(z, z̄) =

∫

S

dβ |z − z̄|∆β−2∆αAβ

α|δ Ψδ
β(x) + (descendants) , (B.5)

where S = 1+iR+ and x = Re(z). The coefficients Aβ
α|δ which appear in the bulk-boundary

OPE are related to the expectation value

Aσ
β|α = lim

2z→i
lim

x→∞
|x|2∆β 〈Ψσσ

β (x)Vα(z, z̄) 〉UL,δ (B.6)

via Aβ
δ|α = Aσ

Q−β|α, as follows by inserting (B.5) into (B.6) and taking into account that

the fields Ψσσ
β (x) are normalized by limx→∞ |x|2∆β 〈Ψσσ

β2
(x)Ψσσ

β1
(0)〉UL,δ = δ(β2 − β1) for

β2, β1 ∈ S. The explicit expression for Aσ
β|α was found in [8]. It may be represented as

Aσ
β|α = ρβ|α

∞∫

−∞

dt
∏

ε=±

S2

(
1
2(2α + β − 2) + iεt

)

S2

(
1
2(2α − β + 2) + iεt

) e4πt(σ−1) ,

where ρβ|α = µ
2−2α−β

2
Γ3

2(2 − β)Γ2(4 − 2α − β)Γ2(2α − β)

Γ2(2)Γ2(β)Γ2(2 − 2β)Γ2(2α)Γ2(2 − 2α)
.

(B.7)

Additional discrete terms will appear in the bulk-boundary OPE (B.5) as soon as Re(α) <
1
2 . There is a single discrete term proportional to Ψ2α(x) as long as 0 < Re(α) < 1

2 . In

– 33 –



J
H
E
P
0
2
(
2
0
0
7
)
0
1
1

order to identify this contribution let us note that the OPE coefficients Aβ
δ|α have a pole

near β = 2α,

Aβ
δ|α ∼

β→2α

1

2π

1

2α − β
. (B.8)

This is shown by noting that contour of the integration in (B.7) gets pinched by the two

poles of the integrand at t = ± i
2(2α − β). Extracting the resulting singular contribution

to the integral by contour deformation yields (B.8).

Without loss of generality7 let us assume that Im(α) > 0. The pole at β = 2α

would cross the contour of integration over β in (B.5) when varying α from Re(α) > 1
2

to Re(α) < 1
2 . The analytic continuation of the integral in (B.5) can be described by

integrating over a deformed contour which is the sum of S with a small circle around the

pole at β = 2α. Evaluating the contribution from the latter by using the residue theorem

and (B.8) leads to the conclusion that in the range 0 < Re(α) < 1
2 the OPE (B.5) gets

modified to

Vα(z, z̄) =

∫

S

dβ |z − z̄|∆β−2∆αAβ

α|δ Ψδ
β(x)

+ |z − z̄|∆2α−2∆α Ψδ
2α(x) + (descendants) .

(B.9)

The discrete contribution in the second line of (B.9) is the dominant one for Im(z) → 0.

The sought-for relation (B.4) therefore follows directly from (B.9).

Let us remark that the functional equation satisfied by Γ2(x),

Γ2(x + 1) =
√

2π (Γ(x))−1 Γ2(x) . (B.10)

together with the analyticity of Γ2(x) for Re(x) > 0 imply that Γ2(x) has a simple pole at

x = 0. This implies in particular that Cδ(iδ) = gσσ
2σ = 0, as is easily seen from (B.2).

It remains to derive the expression (4.18). Let us first observe that due to 〈P |L =

limz→∞ |z|4∆α〈0|LVQ−α(z, z̄) for α = 1 + iP we have

〈P1 |Φδ
P2

(1) |Bδ 〉L = gσσ
1+iP2

Aσ
1+iP2|1−iP1

. (B.11)

Note furthermore that for β = 1 + iP2, P2 = O(δ) we have β − 2σ = δ + iP2 → 0. Formula

(B.13) of [11] is therefore applicable in the case at hand and gives

Aσ
1+iP2|1−iP1

∼
δ→0

µ
1
2
r

2π

2P2

P2 − iδ

P1

sinh 2πP1

Θ(P ) . (B.12)

Equation (4.18) now follows easily by inserting (B.12) and (B.19) into (B.11).

B.2 Structure functions of boundary fields

It follows from (B.1) that F
P3

P2P1
and DP3P2P1

can be expressed in terms of the OPE

coefficients Cσσσ
α3 |α2α1

and the three point functions Cσσσ
α3α2α1

≡ Cσσσ
Q−α3 |α2α1

of the fields

Ψσ2σ1

β (x) [10],

DP3P2P1
= gσσ

α3
gσσ
α2

gσσ
α1

Cσσσ
α3α2α1

, F
P3

P2P1
=

gσσ
α2

gσσ
α1

gσσ
α3

Cσσσ
α3 |α2α1

(B.13)

7The other case leads to the same result thanks to the symmetry of the integrand in (B.5) under

β → 2 − β.
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The formula for Cσσσ
α3 |α2α1

from [10] simplifies slightly in the present case,

Cσσσ
α3|α2α1

=µ
i
2
(P3−P2−P1)

r Γ2(1 − i(P1 + P2 + P3))

× Γ2(1 + i(P2 + P3 − P1))Γ2(1 + i(P2 − P1 − P3))Γ2(1 + i(P3 − P1 − P2))

Γ2(2iP3)Γ2(−2iP2)Γ2(−2iP1)Γ2(2)

× S2(1 + iP3)S2(2 + δ + iP3)

S2(1 + iP2)S2(2 + δ + iP2)

∫

R+i0

ds
4∏

k=1

S2(Uk + is)

S2(Vk + is)
, (B.14)

where we have used the identifications from (B.1), the definitions S2(x) = Γ2(x)/Γ2(2−x)

and
U1 = −δ − iP1,

U2 = 1 − iP1,

U3 = 1 − iP2,

U4 = 1 + iP2,

V1 = 2 − i(P1 − P3),

V2 = 2 − i(P1 + P3),

V3 = 1 − δ,

V4 = 2 .

Taking the limit δ → 0, Pk = O(δ) within the formulae (B.13), (B.14) is subtle due to the

fact that many of the factors exhibit singular behavior. First note that it follows from the

functional equation (B.10) that Γ2(x) behaves for x → 0 as

Γ2(x) ∼
x→0

1

x

Γ2(1)√
2π

. (B.15)

Let us next consider the integral which appears in (B.14). We observe that the contour

of integration in (B.14) gets pinched between the poles of the integrand at is = −U1 =

α1− 2σ = δ(iq1− 1) and is = 2− V4 = 0. It follows that the integral diverges in this limit.

The singular behavior for δ → 0 is identified by deforming the contour of integration into

the contour R + i0 plus a small circle C1 around the pole at s = iU1. The contribution

from the latter is found to be

∫

C1

ds
4∏

k=1

S2(Uk + is)

S2(Vk + is)
∼

δ→0
S2(−δ + iP3)S2(−δ − iP3)Sb(−δ − iP1) (B.16)

∼
δ→0

1

(2π)3
1

−δ + iP3

1

−δ − iP3

1

−δ − iP1

, (B.17)

where we have used S2(x)S2(2 − x) = 1 and S2(x) = 1. Collecting the factors yields

Cσσσ
α3α2α1

∼
δ→0

2π
µ
− 3

2
r

(2π)3

3∏

k=1

2Pk

Pk + iδ
. (B.18)

One finds similarly

gσσ
βk

∼
δ→0

2π µ
1
2
r

Pk − iδ

2Pk

k = 1, 2, 3 . (B.19)

The approximate expressions for the three point functions DP3P2P1
and operator product

coefficients F
P3

P2P1
now follow easily by inserting (B.19) and (B.18) into (B.13).
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B.3 A note on the normalizations

The normalizations used in the present paper are fully fixed by the requirements

lim
z2→z1

|z2 − z1|2(∆α2 +∆α1−∆α2+α1
) Vα2

(z2, z̄2)Vα1
(z1, z̄1) = Vα1+α2

(z1, z̄1) , (B.20)

lim
x2→x1

|x2 − x1|∆β2
+∆β1

−∆β2+β1 Ψσσ
β2

(x2)Ψ
σσ
β1

(x1) = Ψσσ
β2+β1

(x1) , (B.21)

lim
z−z̄→0

|z − z̄|2∆α−∆2α Vα(z, z̄) = Ψσσ
2α(x) , (B.22)

which follow from

Vα(z, z̄) ∼
φ0→−∞

:e2αφ(z,z̄) : , (B.23)

Ψσσ
β (x) ∼

φ0→−∞
:eβφ(x) : . (B.24)

In order to show that (B.14) implies (B.21) one may proceed as in the discussion of the

bulk-boundary OPE in subsection B.1. Equation (B.21) follows from the observation that

Cσσσ
α3|α2α1

∼
α3→α1+α2

1

2π

1

α1 + α2 − α3
, (B.25)

which is shown by the same method as (B.8). The normalization prescriptions used in [5,

8, 11] differ slightly from the one used in this paper.
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